LE RISORSE GEOTERMICHE A MEDIA ED ALTA ENTALPIA NELLA SICILIA ORIENTALE

PATERNO' 3 Maggio 2013 Biblioteca comunale, Via Monastero 4

Sviluppi e risultati del progetto, ulteriori e indispensabili ricerche nella Sicilia orientale

Adele Manzella

CNR - Dipartimento Scienze del Sistema Terra e Tecnologie per l'Ambiente Istituto di Geoscienze e Georisorse

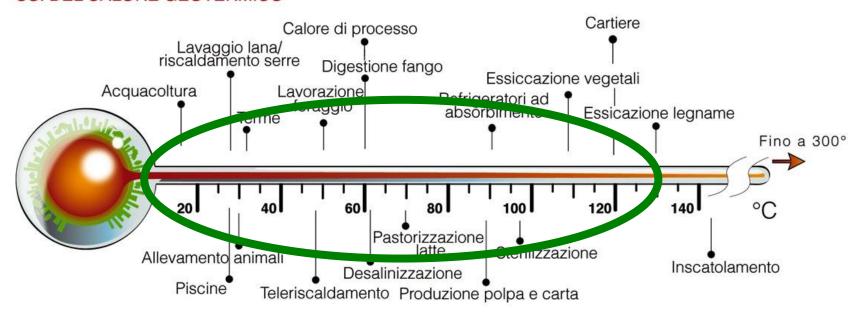
vigor@igg.cnr.it

Cosa è VIGOR Obiettivi e indirizzi

"Indirizzato alla valutazione del potenziale geotermico finalizzato alla realizzazione di interventi innovativi di utilizzo della fonte geotermica nelle Regioni Convergenza"

Cosa si realizza in VIGOR

Attività	Dove
Raccolta ed organizzazione dati	Ovunque nelle 4 Regioni
Valutazione delle risorse superficiali	Regionale Area 1: Calabria Area 2: Campania Area 3: Puglia Area 4: Sicilia Area 5: Puglia
Valutazione delle risorse profonde	Regionale Area 6: Campania Area 7: Sicilia Area 8: Calabria
Valutazione del potenziale geotermico	Regionale e puntuale sulle 8 aree
Disseminazione	Ovunque nelle 4 Regioni

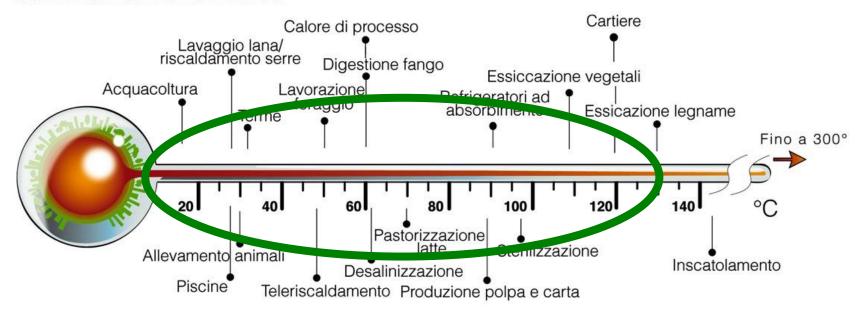


Valuta in dettaglio 8 aree (2 per ciascuna regione).
I rapporti di fattibilità comprendono la valutazione della risorsa, e quella impiantistica, economica e autorizzativa.

Ampio spettro di risorse

USI DEL CALORE GEOTERMICO

GENERAZIONE CORRENTE ELETTRICA


Ciclo binario

Vapore

Valutazione di dettaglio di risorse ad alta entalpia

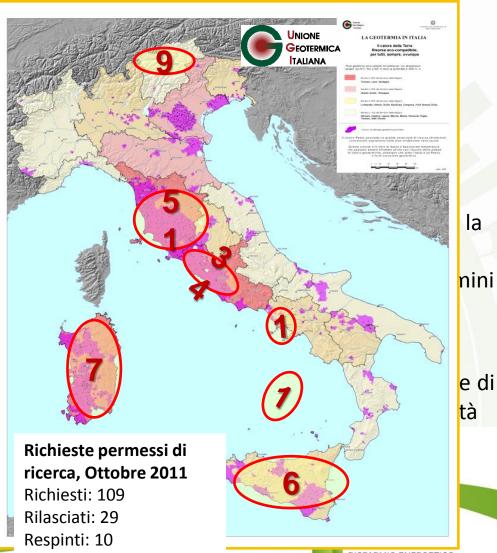
USI DEL CALORE GEOTERMICO

CLIMATIZZAZIONE

Pompe di Calore Geotermiche

GENERAZIONE CORRENTE ELETTRICA

Ciclo binario


Vapore

La geotermia e il POI

Osservazioni

- ➤ Il potenziale naturale geote riscontrabile nel territorio d applicazioni ed utilizzi di tip
- La ricaduta sul tessuto impr possibilità di replicare i prog diffusa del potenziale natur di creazione di un mercato dell'occupazione;
- È attivabile in tempi rapidi, progetti ad alta entalpia, a r industriali più estese.

la

Valuta e quantifica il *potenziale geotermico* delle 4 regioni (capacità di geoscambio termico per profondità di 200 m, potenziale energetico profondo)

Valuta e quantifica il *potenziale geotermico* delle 4 regioni (capacità di geoscambio termico per profondità di 200 m, potenziale energetico profondo)

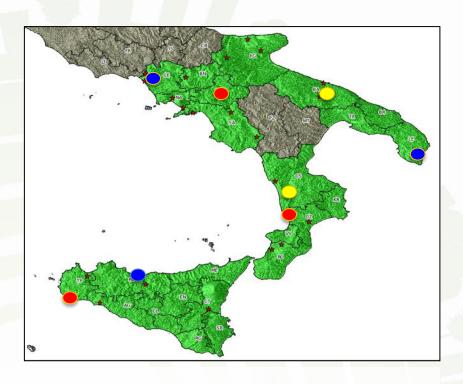
Propone impianti innovativi per la realizzazione di interventi in diversi processi civili e industriali (usi termici mediante geotermia e pompe di calore, cogenerazione. Compatibili con riferimento interventi POI), realizzabili con tecnologie disponibili (tempi di realizzazione relativamente brevi) ottimizzate e full-green (ibridi, efficienza energetica).

gor-geotermia.1t

Valuta e quantifica il *potenziale geotermico* delle 4 regioni (capacità di geoscambio termico per profondità di 200 m, potenziale energetico profondo)

Propone *impianti innovativi* per la realizzazione di interventi in diversi processi civili e industriali (usi termici mediante geotermia e pompe di calore, cogenerazione. Compatibili con riferimento interventi POI), realizzabili con *tecnologie disponibili* (tempi di realizzazione relativamente brevi) ottimizzate e full-green (ibridi, efficienza energetica).

Mediante un approccio di sistema (dal dato, alla normativa, al progetto) e integrato (ambiente/ territorio/tecnologie) VIGOR realizza una promozione degli usi geotermici per dare impulso alle realizzazioni locali, mediante presentazione strutturata delle opportunità.



La struttura di VIGOR:

il progetto

Le valutazioni regionali del potenziale geotermico mirano alla produzione di mappe di potenziale geotermico superficiale (mappe di geoscambio per impianti di climatizzazione con pompe di calore) e potenziale geotermico profondo

Le **valutazioni di dettaglio** comprendono la valutazione della risorsa e la proposta impiantistica, e forniscono rapporti di fattibilità completi.

In figura, le aree proposte dal CNR (stelle rosse)

e aree scelte dalle Regioni: in giallo siti per impianti climatizzazione con pompe di calore, in blu siti per valutazione risorse superficiali (entro 400 m), in rosso i siti per per valutazione risorse profonde.

Valutazioni del sottosuolo

Valutazioni impiantistiche

Valutazioni economiche

Valutazioni autorizzative

Valutazioni energetiche

INDICE

- 1. Executive Summary
- 2. Introduzione
- 3. La risorsa Geotermica: caratteristiche e suo sfruttamento
- 4. Descrizione progettuale
- 5. Schema del progetto
- Simulazione di funzionamento dell'impianto
- 7. Analisi socio-ambientale
- 8. Analisi di fattibilità economica
- Analisi territoriale e autorizzativa

ELENCO ELABORATI

- a. Tutti gli elaborati dello studio di fattibilità tecnico
- b. Cartografia del luogo dell'intervento, ovvero dei pozzi di estrazione e iniezione, e del luogo dell'impianto;
- c. Studio di Fattibilità Tecnico/economica;
- d. Planimetria generale dell'edificio (se climatizzazione) o dell'impianto (se uso diretto)
- e. Schema impiantistico del sistema
- f. Preventivo di massima del costo di investimento
- g. Simulazione ambientale del sistema
- h. Simulazione energetica del funzionamento del sistema
- i. Analisi di fattibilità economica dell'impianto

RAPPORTO DI FATTIBILITÀ

AREA DI STUDIO:

MONDRAGONE (CE) - CAMPANIA

Coordinatore attività di valutazione dell'area di de Marina Iorio, CNR - IAMC Coordinatore attività di valutazione impiantis Ing. Massarotti, Università Parthenope

> Coordinatrice Scientifica del Progetto VIGOR: Adele Manzella, CNR-IGG

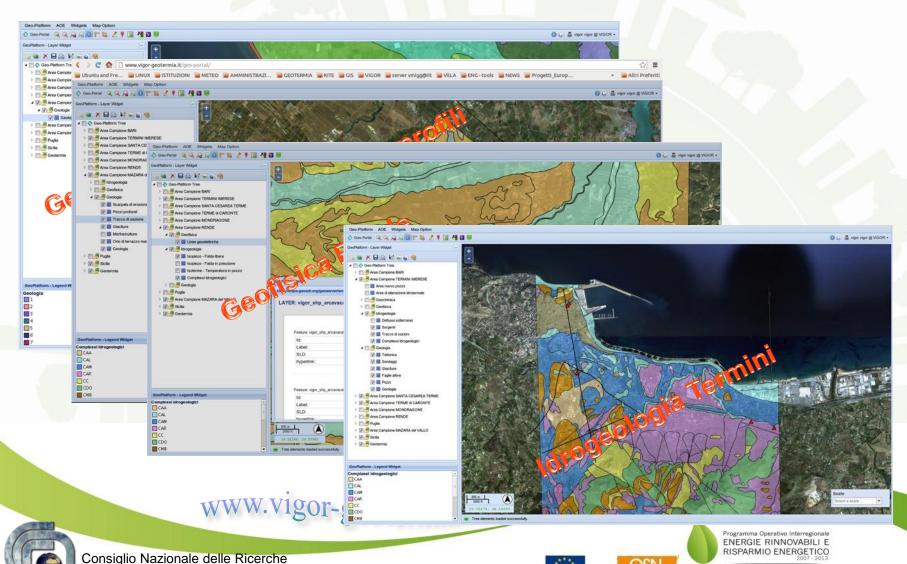
> > Ottobre 2012

RAPPORTO DI FATTIBILITÀ AREA DI STUDIO:

SANTA CESAREA TERME (LE) - PUGLIA

Coordinatore attività di valutazione dell'area di dettaglio: Francesca Santaloia, CNR - IRPI Coordinatore attività di valutazione impiantistica: Giuseppe Lombardo, CNR - IPCF

> Coordinatrice Scientifica del Progetto VIGOR: Adele Manzella, CNR-IGG



La cartografia disponibile via webGIS

Una scelta illuminata

ThermoGIS è un protocollo sviluppato da TNO in collaborazione con i principali istituti di ricerca europei nell'ambito di progetti geotermici EU, a cui partecipa anche il CNR-IGG.

Permette il calcolo del potenziale geotermico del principale acquifero regionale per la produzione di energia elettrica e usi diretti del calore.

Per VIGOR il potenziale viene calcolato fino a profondità di 5 km

- Potenziale Tecnico Economico (MW/km², potenziale con LCOE < soglia =200 €/MWh per elettricità e 9€/GJ per calore)
- Potenziale Tecnico per diversi fattori di recupero (MW/km²)

- Energia termica producibile per tipo di tecnologia (H x efficienza, PJ/km²)
- H = Massima energia termica teoricamente estraibile per unità di volume di sottosuolo (in serbatoio, PJ/km²)

Potenziale tecnico economico

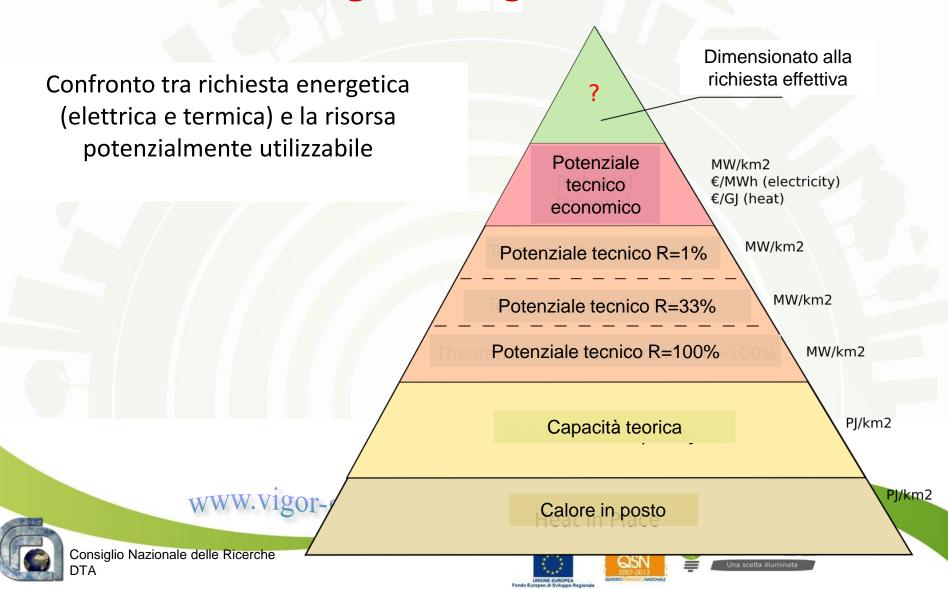
Potenziale tecnico R=1%

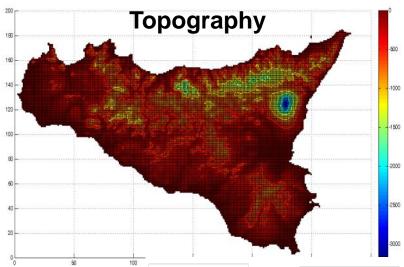
Potenziale tecnico R=33%

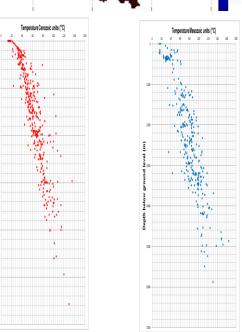
Potenziale tecnico R=100%

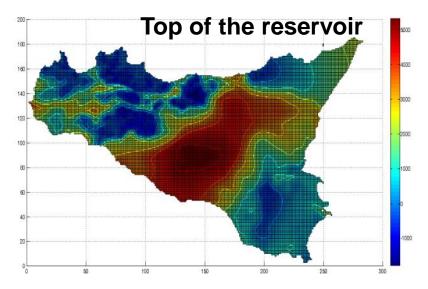
Capacità teorica

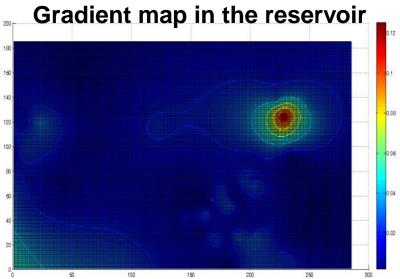
Calore in posto



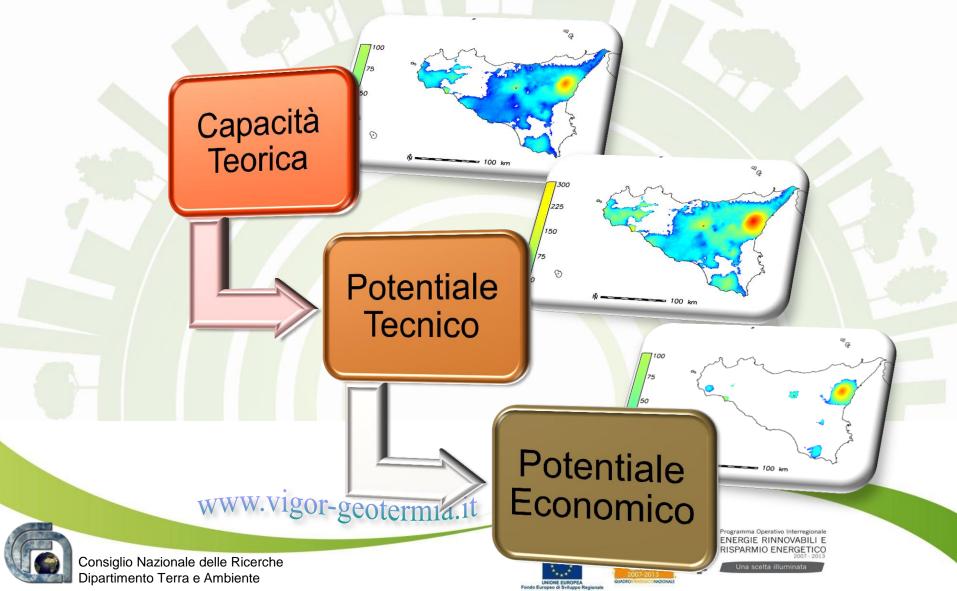


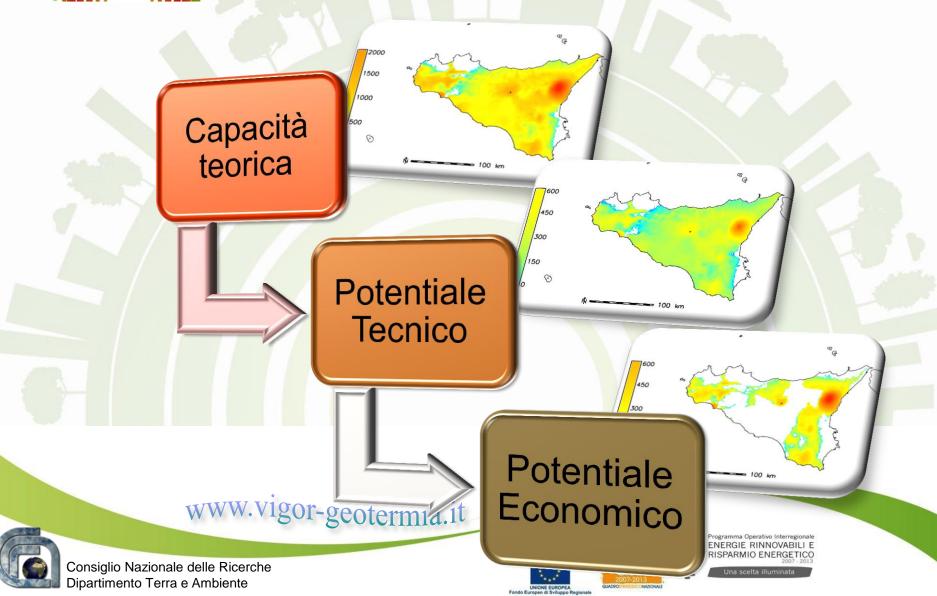

Mappe di valutazione del potenziale e fabbisogno energetico in VIGOR




THERMAL MODELLING

Temperature gradient in cover (red) and reservoir (blue) units



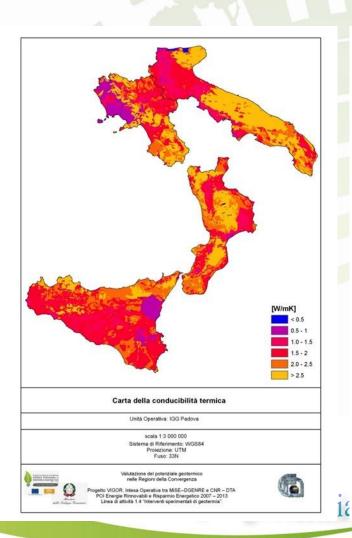


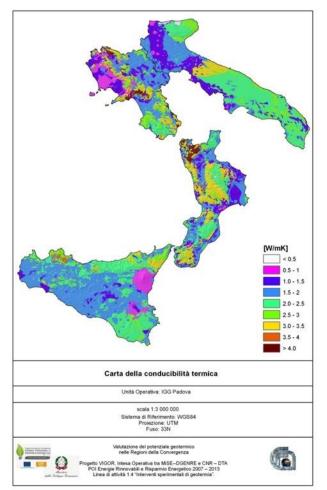
Distribuzione della temperatura in superficie

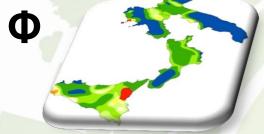
Temperatura dell'aria, topografia, latitudine

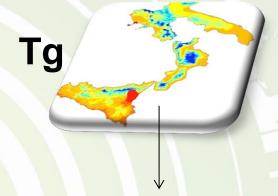
Distribuzione della conducibilità termica

Carte geologiche, dati idrogeologici e stratigrafici da pozzo, conducibilità termica da latteratura e da laboratorio Energia di scambio


Temperatura del terreno, volume di riferimento, impianto di riferimento



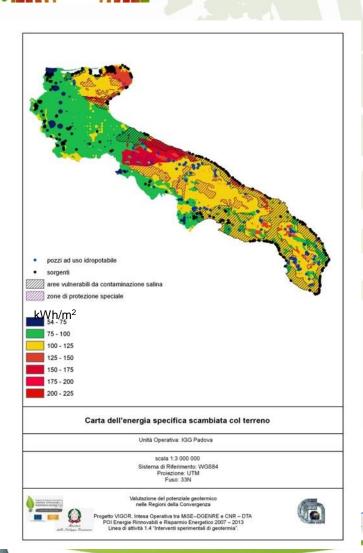


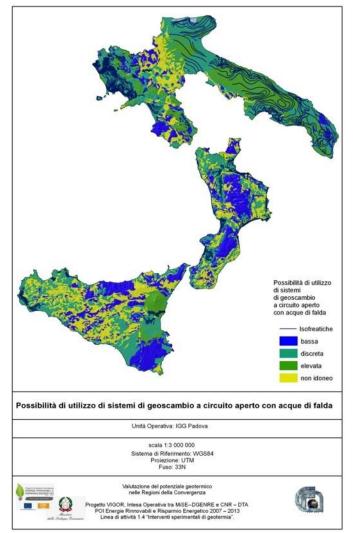


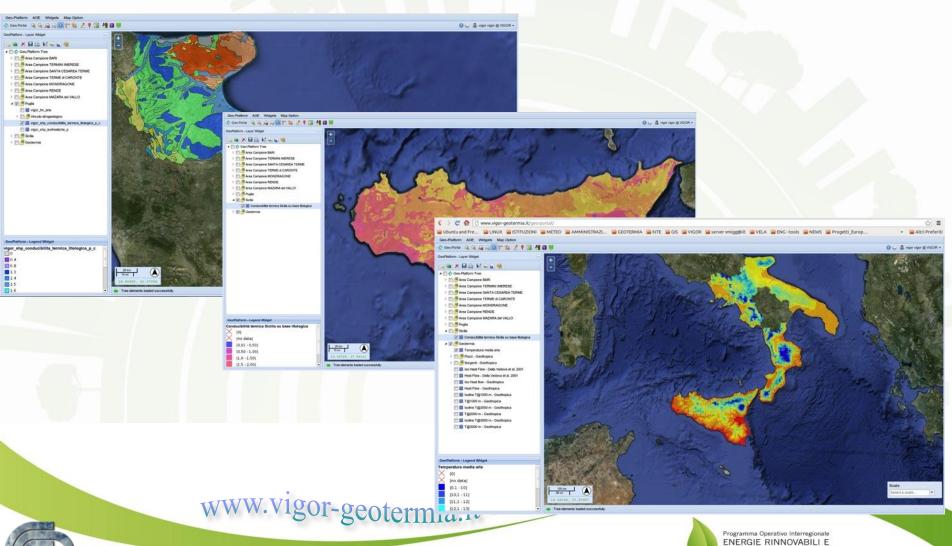
$$Tg = Tm + \frac{\Phi}{\lambda} *L/2$$

Fourier's Law L = 100 m

Thermal energy that can be exchanged by a unit volume of ground for a reference GSHP plant





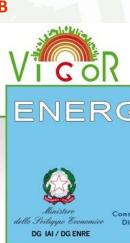


La cartografia disponibile via webGIS

Consiglio Nazionale delle Ricerche

RISPARMIO ENERGETICO

- ✓ Impianti geotermici per l'uso diretto del calore
- ✓ Impianti geotermici per la generazione e co-generazione di elettricità e calore



Main Menu

- > Home
- > Progetto
- > Contesto
- > Objettivi
- > Attività
- > Partecipanti
- > Risorse
- > Links

Area Privata

Password Ricordami [

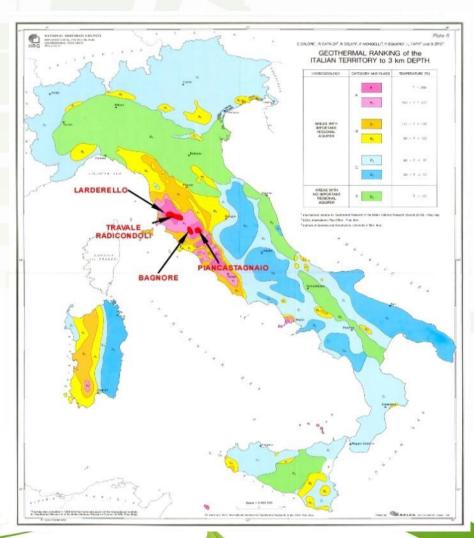
Nome utente

Benvenuti in VIGOR!

VIGOR è un progetto che nasce da una intesa operativa tra il Ministero delle Sviluppo Economico - DG ENRE e il Consiglio Nazionale delle Ricerche - DTA nell'ambito del POI "Energie Rinnovabili e Risparmio Energetico 2007/2013", ed è finalizzato alla individuazione e realizzazione di interventi per ampliare il potenziale sfruttabile di energia geotermica sul territorio delle Regioni Campania, Calabria, Puglia e Sicilia.

Il coordinamento scientifico è curato dalla Dott.ssa Adele Manzella dell'istituto di Geoscienze e Georisorse del CNR di Pisa.

Il progetto si avvale delle migliori competenze geotermiche del CNR e dei principali riferimenti in Scienze della Terra e dell'Ambiente degli istituti di ricerca e delle università delle regioni di riferimento.



Dove eravamo prima di VIGOR

Inventario Risorse Geotermiche Nazionali

Condotto da CNR, ENEA, ENEL e ENI
Legge No 896 of **1986**.
Costituito da rapporti e mappe
Il Ranking Geotermico del territorio italiano era
basato sulla temperatura e sulla disponibilità del
fluido

- A. aree con almeno un acquifero a profondità < 3 km, e temperature > 150°C
- B. aree con almeno un acquifero a profondità < 3 km, e temperature che variano tra 150 e 90 °C</p>
- C. aree con almeno un acquifero a profondità < 3 km, e temperature che variano tra 90 e 30 °C
- D. aree con almeno un acquifero a profondità < 3 km, e temperature < 150°C

Necessità

Completa individuazione di risorse e opportunità, organizzazione e disponibilità dei dati e delle informazioni

Normativa e Iter autorizzativi chiari, snelli, per la fase di esplorazione e lo sviluppo di progetti geotermici, incentivi

Promozione e disseminazione delle tecnologie e delle informazioni tecnico-economiche

Ricerca e sviluppo tecnico

- Grandi risorse
- Numerosi studi, soprattutto nella zona etnea
- Poche conoscenze delle risorse geotermiche per se

Occorre approfondire le conoscenze e studiare modi nuovi di utilizzare il calore geotermico (vedi Atlante Geotermico delle Regioni Mezzogiorno del CNR), investire in ricerca e sviluppo (nuovi pozzi in primis)

GRAZIE PER L'ATTENZIONE

Adele Manzella

vigor@igg.cnr.it

