

The European Geothermal Information Platform (EGIP), an opportunity to be INSPIRE compliant for Geothermal knowledge

E. Trumpy¹, A. Manzella¹, P. Calcagno², JJ. Serrano²,

¹ Institute of Geosciences and Georesources – National Research Council of Italy, Via Moruzzi 1 – 56124 PISA, Italy

e.trumpy@igg.cnr.it

² BRGM, Orleans, France

GEOTHERMAL ERA-NET

- It encompasses 9 European countries: Iceland, the Netherlands, France, Germany, Slovak Republic, Switzerland, Italy and Turkey, Hungary
- The Geothermal ERA-NET is aimed
 - to deepen the cooperation on national and administrative level
 - be an enabler for the integration of national research
 - development agendas into a coherent European geothermal R&D programme
 - to <u>create</u> a European Geothermal Information Platform
- The Geothermal ERA-NET will focus on the utilization of geothermal energy, from direct heating use up to higher enthalpy resources and their corresponding use (e.g. power generation)
- Budget: € 2.2 mln (2012-2015); Time: 4 years; Start: June 2012

ERA-NET partners

- Geothermal energy research program owners and managers

National Energy Authority (coordinator)	Iceland
Agentschap NL	The Netherlands
Swiss Federal Office of Energy	Switzerland
The National Research Council of Italy	Italy
Project Management Jülich	Germany
ADEME (French Agency for Environment and Energy Management)	France
BRGM as third party of ADEME	France
Icelandic Centre for Research (RANNIS)	Iceland
Scientific and Technological Research Council of Turkey (TUBITAK)	Turkey
Ministry of Education, Science, Research and Sport of the Slovak Republic	Slovakia
The EnergyEfficiency, Environmental and Energy Information Agency (NKEK)	Hungary

- Lead partner is Orkustofnun (National Energy Agency of Iceland)
- Good geographical balance (North-West to South-East Europe) . Countries participating in this ERA-NET are, among other things, chosen on the basis of their ambitions to include geothermal energy into their goals for 2020 and 2050 on the reduction of CO2 emissions.
- Adding partners is a high priority target to strengthen and broaden the GTH ERA-NET (...)

WP3: Towards a

European Geothermal Information Platform (EGIP)

was WP3: Towards a European Geothermal Database

Objectives

- Geothermal ERA-NET aims to work on setting the standard on what geothermal information to collect for Europe, proposing and describing the <u>structure</u> of a <u>European Geothermal Information Platform</u>, to have a reference that may be followed at national level and to put the base for a common <u>Data Model</u> to share information among European countries.
- Within Geothermal ERA-NET we also aim to define general rules for managing the <u>catalogued</u> data and implement <u>services</u> to provide the information of the European Geothermal Information Platform following INSPIRE specification.

ERANET - WP3: Towards a European Geothermal Information Platform

Activities

- To complete the preliminary work required for the creation of a European Geothermal Information Platform with the purpose of sharing information on <u>legal</u> and <u>regulatory aspects</u>, <u>policies</u>, <u>measures</u>, <u>institutions</u>, <u>research projects</u> and <u>data</u>.
- Collection of <u>statistical data</u> on the *principal parameters of geothermal energy utilization* in each country and a list of multinational projects in this field.
- Overview of *spatial databases/datasets* and web services that publish information on geothermal and geology on the internet.
- A feasibility study including budget estimates for the implementation of the Platform.
- Follow-up the implementation of the European Geothermal Information Platform.

WP3: Towards a European Geothermal Information Platform

Task 3.1 Preparation of the scientific and technical activity

 Preparation activities, including scientific and technical programme, two specialized workshop on European Geothermal Database, organization of addictional meeting

Task 3.2 State of the art and needs

Questionnaire, data inventory, needs and gaps, State of the art report

Task 3.3 Preparation of a feasibility study

Discussion on feasibility, INSPIRE inplication on EGIP, budget estimation, feasibility study

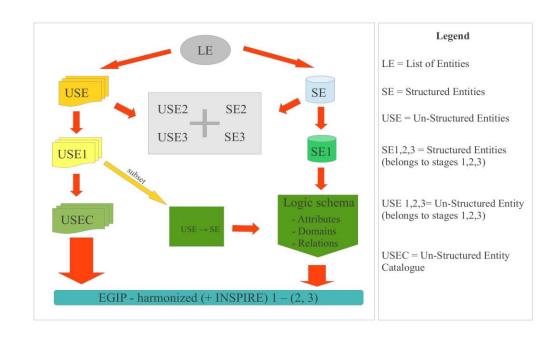
Task 3.4 Following-up the implementation

 The preliminary design will be used to prepare a call for proposal to implement the European Geothermal Information Platform through one or more pilot area(s)

ERANET WP3 roadmap

D3.2 Feasibility Study Index:

- Introduction: Roadmap towards three stages of development
- Organization of the documents collected (from the state of the art) "Stage zero"
- Definition of data lists for each stage (from the state of the art), data specification and functionalities
- Data Model (first stage):
 - Entities and attributes
 - Relation
- Description of functionalities (first stage)
- Catalogue (first stage)
- Budget estimation
- INSPIRE BRGM contribution


Towards a European Geothermal Database

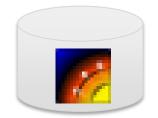
Task 2: State of the Art

Questionnaire structure

- General Database Context information
- Data Master List
 - Scientific and technical aspects
 - Social acceptance (including environmental issues)
 - Code (thesaurus, glossary, lexicon, reporting code)
 - Skills & employees, energy needs
 - Research R&D
 - Training and education
 - Regulatory aspects
 - Economics (fund, risks&insurance)
 - Other (hints)
- Database Application to develop
- Procedures for data update and data management

Task 3: toward feasibility

Towards a Geothermal European Information Platform EGIP – **state of the art**


Geothermal knowledge information

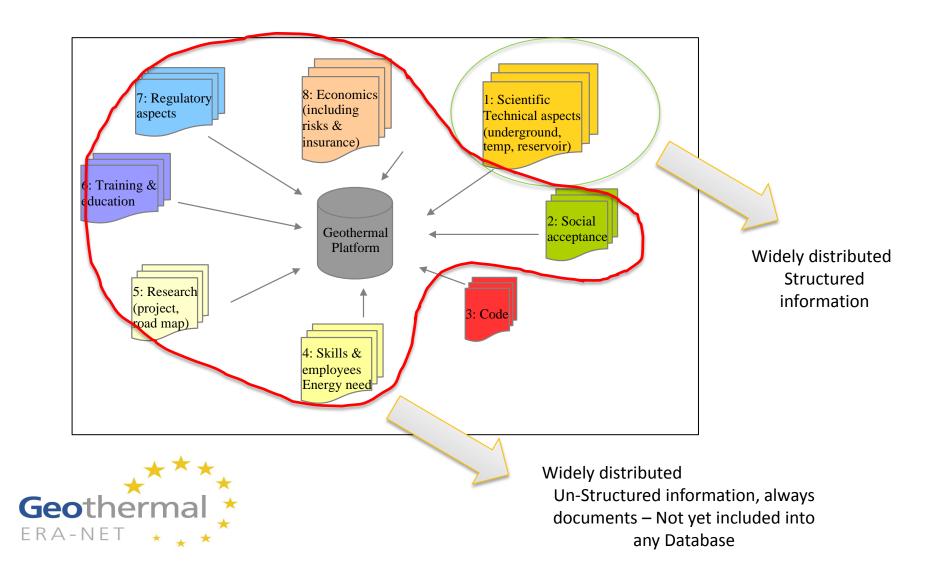
International DB

New IRENA (renewable energy database), etc...

National DB

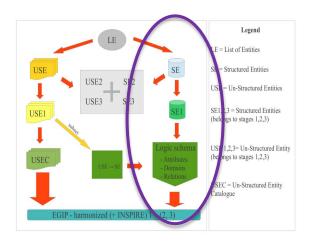
Geothopica – Italian National Geothermal Database, etc...

Project DB


Geoelect, geoDH, ...

Towards a Geothermal European Information Platform EGIP – **content**

Feasibility stage 1 list of data


WP3
questionnaire
surveyed 42
different kind of
geothermal
information

Data	Structred	Sub-Section	Feasibility stage
Temperature maps at depth (Available depth?) 1 / 2 / 3 km	Υ	Scientific and technical aspects	1
Surface heat flow measurements and map	Υ	Scientific and technical aspects	1
What is the reference system used for georeferencing data (UTM, WGS, or others)?	/	Scientific and technical aspects	1
Environmental impact laws	N	Social acceptance (including environmental issues)	1
Geothermal national roadmap	N	Research R&D	1
list of Education & Research intitutes		Training and education	1
Rules of licencing (exploration/exploitation)	N	Regulatory aspects	1
Legal condition for grid access	N	Regulatory aspects	1
Insurance covering the geothermal project risks (e.g. deep drilling wells)?	N	support schemes	1
Royalities & taxes, support scheme (feed-in tariffs, grants,)	N	support schemes	1
Industry list	N	Deployment	1

Design Data Model

Structured data – included in the feasibility first stage

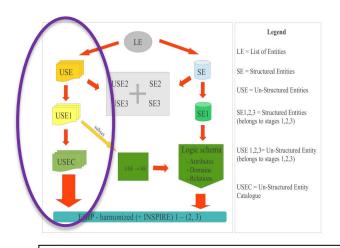
Structured

Name layer: Description: Layer cod:

Typology: Raster / Vector / Grid

If Vector, Geometry: Point / Line / Area

Field	Length	Type*	Decimal	Note
POINT_ID	5	I		Unique and not null identity number
ТҮРЕ	4			1000 = fumaroles 1010 = manifestation of gas 1020 = manifestation of water and gas 2000 = well 2010 = exploration 2020 = thermal gradier well 2030 = produlo vell 2040 = domestic rehole 3000 oring 3010 oited spring injection well 20 = monitoring well 20 = monitoring well 20 = mushown
TYPOLOGY	1		9	0 = missing data 1 = sure 2 = deducted 3 = unsure 4 = 9 = not applicable/not classifiable
STATUS	6	_		0 = missing data 1000 = production 2000 = test 3000 = temporary closed 4000 = 9999 = not applicable
OTHERS				

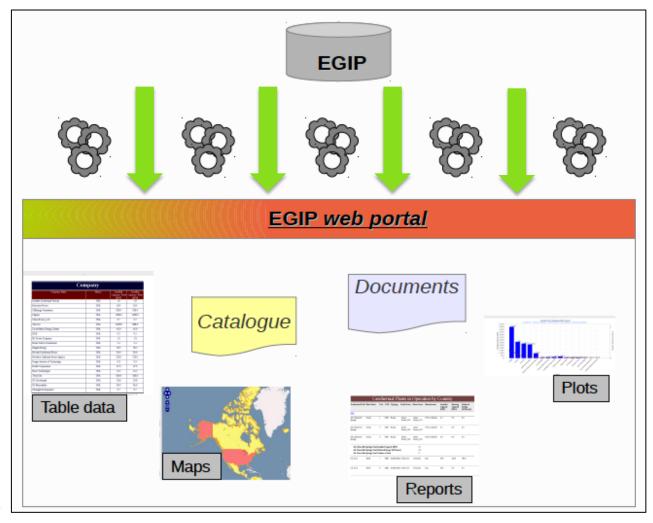


NOTE: *Type can be (I= Integer, C=Character, F=Float)

The spatial data will be provided with INSIPRE metadata definition, based on ISO19115 and ISO19119

Design Data Model

Un-structured data – list of documents included in the feasibility first stage


- EGIP Topic:
- Keywords:
- Reference: (journal, year, volume, issue, pages, ISSN, ISBN, DOI)
- URL
- Author 1:
- Authors:

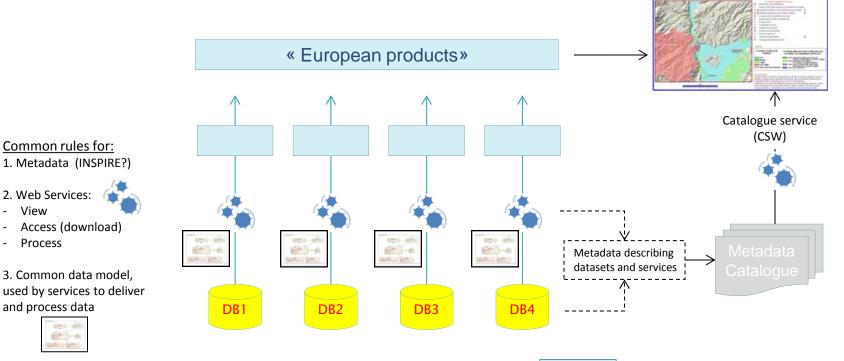
Towards a Geothermal European Information Platform EGIP – **functionalities**

EGIP tools have to guarantee a 360° data browsing (e.g., browsing from a catalogue to a document, from a document to a tabled info or spatial data) and allowing a deep survey into the geothermal knowledge.

Towards a Geothermal European Information Platform EGIP – **INSPIRE benefits**

- Interoperability: Retrieve, view and access information from other providers (via wms, e.g., temperature maps @ depth, protected areas, ...)
- Harmonization of the geothermal domain at the European level
- European Commission favours and finances such harmonization in some
 European projects
- Investment for harmonizing at national level

INSPIRE compliant


 Not a single Database (DB) gathering all the information from the countries

but

A way to upscale national knowledge at European scale where the information belongs to the countries and is stored in national DB

EGIP Architecture overview (proposal)

Each provider delivers a piece of the puzzle:

Which can be map

or data

Common rules for: 1. Metadata (INSPIRE?)

2. Web Services: View

Process

and process data

Access (download)

3. Common data model.

For the services:

- View and access/download services are well specified in INSPIRE
- Process services have to be compliant with a general framework only

For the common data model to be used by the access, download and process services:

- to specify this data model: input from existing DB, and INSPIRE requirements
- Participation to Specification Working Groups for standardisation (INSPIRE and others)
- Development of vocabularies (code-lists)

Towards a European Geothermal Database

How to get EGIP: towards feasibility

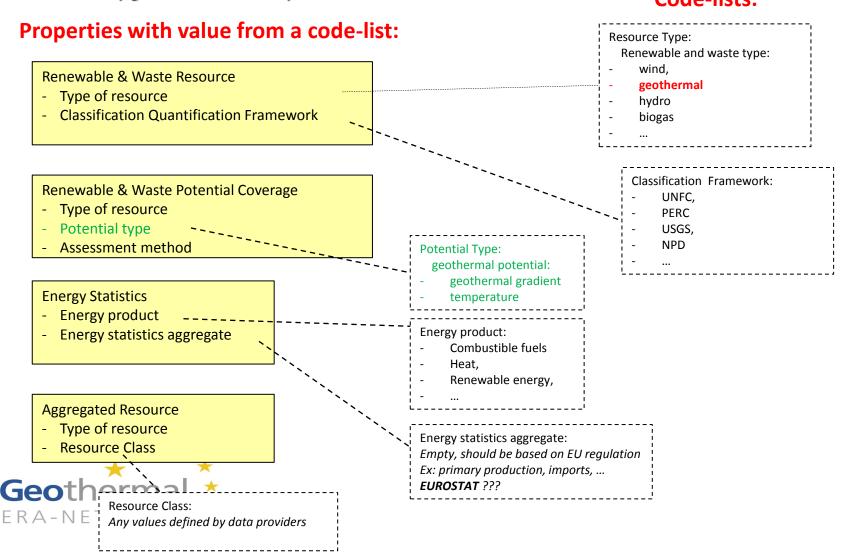
- 1. work on the data specification (including both the structured and the unstructured data)
- 2. Define three importance levels of information for our geothermal community starting from the master data list proposed in two questionnaires e.g., Education/training Where are located geothermal courses in my country... at national level
- 3. Define "European product(s)" What to deliver at the European level, gathering national data ex.: Potential type geothermal gradient, temperature (compulsory in INSPIRE) e.g.: EUROSTAT
- 4. Define EGIP basic functionality, e.g. **Tables** data, **Reports**, **Maps**, **Charts**, documentation **Search** and **Download**, others???

INSPIRE implication on EGIP

- Take into account data models of existing databases
- Check INSPIRE Energy Resources data model concepts (Renewable & Waste Resource, Renewable & Waste Potential coverage, Energy Statistics, Aggregated Resource)
- Check other INSPIRE themes as they could provide useful information, with no need to design a new data model (Protected Sites, Statistical Units, Area Management for permits, ...)
- Specify when a property must have a value from a code-list

INSPIRE Data specification for Energy Resources

- Data specification for ER draft guidelines v3.0 rc 3 (4/02/2013)
- Core data model => regulation (Implementing Rules)
- Extensions: to provide more objects and properties
- 3 packages:
 - Energy resources vector
 - Energy resources coverage (grid)
 - Energy statistics (extension)
 - + Common data types are also defined in the specifications


Next slides: only Geothermal Energy is presented

INSPIRE Data specification for Energy Resources

Geothermal: Energy available as heat emitted from within the Earth's crust, usually in the form of hot water or steam. This energy production is the difference between the enthalpy of the **fluid** produced in the production borehole and that of the fluid eventually disposed of. It is <u>exploited</u> at suitable sites for electricity generation or directly as heat.

Code-lists:

Final remarks

Not only...

- ✓ Finalization of the data model for EGIP compliant with INSPIRE
- ✓ A few Web services
 - ☐ Visualize data: Web Map Services (WMS)
 - Access data: Web Feature Services (WFS)
 - ☐ Process data: Web Processing Services (WPS)
- ✓ A pilot accessing a few countries to demonstrate the implementation

...but also:

- ✓ Contributing to the INSPIRE working group?
 - → Next Technical Guideline 2014
- ✓ Participate and influence specifications and implementations for the geothermal sector

THANK YOU FOR YOUR ATTENTION